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Abstract

These are lecture notes for a minicourse taught by the author at the Hypergeometric
school, taking place at Kobe University on August 16-17, 2023. We study the positive
and nonnegative points of affine and projective toric varieties, embedded via a monomial
parametrization. We prove the well-known fact that a nonnegative toric variety is
homeomorphic to a cone, in the affine case, or a polytope, in the projective case. We
establish this via the algebraic moment map. We discuss applications of positive toric
varieties in algebraic statistics, linear programming and geometric modelling.

1 Toric varieties

We start with a lightning introduction to complex, embedded toric varieties. We take the
approach of references like |7, 9, 11]: our toric varieties are not necessarily normal, and they
come with an embedding in affine or projective space. For further reading, we point the
reader to the lecture notes [10, 14|, and the standard text books [4, 6].

Most toric varieties in applications arise via a parametrization map which uses only
monomials. The data defining such a map is an integer matrix

apn @iz - Qs
A ay= | e
Upl Opo  + Qpe
recording the exponent vectors aq,...,as € Z" of these monomials in its columns. That is,
the monomial map ¢4 associated to A is
¢a: (C)" — C°, where ¢a(t) = (t*,...,t%). (1)

Here t = (t1,...,t,) and t* is short for ¢} - - %,
We associate an affine variety Y4 C C® to A by taking the Zariski closure of im ¢4:

YA = 1Hl¢A = {gbA(t) 1t e (C*)n} C Cs.

This is what is called an affine toric variety, and all affine toric varieties arise in this way.
Many familiar varieties are of the form Y, for some A € Z™*°. Here are some examples.
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Figure 1: Three toric surfaces in three-space.

Example 1.1 (affine spaces and tori). The variety Yy for the identity matrix A = id,, is C".
appending a column with entries —1, we obtain the n x (n + 1)-matrix

1 -1

A= :
1 -1

Now Y, is parametrized by (t1,...,t,) = (t1,...,tn, (t1++-t,)"') € C*L. Its equation is
Ya={x1 21y =1} C C". In fact, Y4 ~ (C*)", hence ¢, is a closed embedding. o
Example 1.2 (moment curves). The moment curve of degree d arises from

A=(1 2 - d) ez™

It is embedded in C? via the parametrization ¢4 (t) = (¢,t2,...,t%). For d = 2, the moment
curve is the parabola {2 —y = 0} in the affine plane C2. For d = 3, it is the twisted cubic
from [3, p. 8], defined by Y{; 2 5y = {2? —y =2 — 2 =0} C C°. o

Example 1.3 (toric surfaces). Consider the 2 x 3-matrices

110 111 112
Al—(1 0 1)’ A2—<1 0 2) and A3_(1 2 1)‘

These correspond to toric surfaces Yya,,Ya, and Yy, in C?, with defining equation z — yz =
0,72 — yz = 0 and 2® — yz = 0 respectively. The parametrization of A; is @4, (t1,t2) =
(t1ta,11,t2), and x — yz vanishes on the image. The degree of Y4, and Yy, is 2, while Y, has
degree 3. Some real points of these surfaces are shown in Figure 1. Note that Yy, is smooth,
while Yy, and Y4, have a singular point at the origin. o

Example 1.4 (rank-one matrices). Consider the matrix A € Z°*% given by

111000
000111

A=|[100100 (2)
010010
001001
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Figure 2: The polytopes conv(0U A;), conv(0U Ay) and conv(0U Ajz), with A; as in Example
1.3, are the regions shaded in light green. The dark green regions are conv(A;),conv(As)
and conv(As) (left to right).

The corresponding monomial map ¢4 parametrizes rank-one 2 x 3-matrices:

[ttty ity s\ (T 2%3 _ 6
¢A(t1,...,t5) = (tgtg toty tols = t (t3 iy t5) eC = C.

Analogously, one easily finds the matrix A € Z(@+d2)xdidz for rank-one d; x do-matrices. o

The two most important invariants of an algebraic variety are its dimension and degree.
For the toric variety Y4, these invariants are expressed nicely in terms of the matrix A. It is
our first encounter with a convex polytope. We define

conv(0U A) = conv(0,aq,...,as) C R".

Here conv(-) takes the convex hull of a list of points in a real vector space, 0 € R" is the
origin and a; € Z™ C R" is the i-th column of A. In general, a convex polytope P C R" is
the convex hull of finitely many points. Here is a warm up example.

Example 1.5 (convex polytopes). In dimension n = 1, polytopes are line segments. For
instance, the polytope conv(0 U A) for the matrix A = (1 2 3) for the twisted cubic from
Example 1.2 is the line segment [0, 3]. Two dimensional polytopes are called polygons. Three
examples, coming from Example 1.3, are shown in Figure 2. o

The dimension of a convex polytope P C R" is that of the smallest affine-linear subspace
containing it, and the volume is Vol(P) = [, 1dx; - - - dx,. We write ZA for the lattice

ZA = {nja1 +---+ngas : nj € Z} C Z". (3)
Theorem 1.6. The dimension and degree of the affine toric variety Y are given by
dimY, = dimconv(0 U A) = rank(A), degYy = n!- Vol(conv(0 U A)). (4)
Here the formula for deg Yy assumes that rank(A) = n and ZA = 7.

Proof. For the statement about dimension, see for instance |14, Corollary 2.14|. The state-
ment about the degree of Y, will follow from Theorem 1.13 and the observation that Y}, is
an affine open subset of the projective toric variety Xoya. O



Having determined the dimension and degree of Y, we now ask for its defining equations.
Definition 1.7. The toric ideal of an integer matrix A € Z"** is the binomial ideal
Iy = (" —2" :u,v e N°, A(u—v) =0) C Clay,..., x4 (5)
Theorem 1.8. The toric ideal 14 is the prime ideal 1(Y4) of the affine toric variety Y.
Proof. See [4, Theorem 1.1.9]. The reader should check I4 C I(Y4) as an exercise. O
We close the discussion on affine toric varieties with a criterion for smoothness.

Theorem 1.9. The affine toric variety Y4 is smooth if and only if the semigroup NA C Z"
generated by the columns of A can be generated by only rank(A) elements.

We now switch to the projective toric variety defined by A. We replace (1) by
Py (CH — P51 where ®u(t) = (£ 1 ... t%). (6)

We associate a projective variety X4 C P! to A by taking the Zariski closure of im® 4:

XA = 1m(I)A = {(I)A(t) te (C*)n} C ]P)sil.
We revisit some matrices we have seen before from this projective point of view.
Example 1.10 (projective space is toric). The variety X, for A = id,, is P"~1. o

Example 1.11 (Example 1.3 in P?). The matrices A;, Az from Example 1.3 give the pro-
jective toric variety X4, = X4, = P2. Indeed, the maps ®4, and P 4, are dominant. The
matrix Ay leads to a smooth toric curve X, = {z? — zoz3 = 0} C P2 o

Example 1.12 (Segre embedding). The threefold X4 C P corresponding to the matrix A
from (2) is the Segre embedding of P! x P? into P5. It is described by

rank <x1 T2 x3> < 2.

Ty Ty Ty
That is, the defining equations are the 2 x 2 minors of this matrix. o

Projective toric varieties are closely related to polytopes. The right polytope to associate
with X4 is the convex hull in R of the columns of A, denoted conv(A). These polytopes
for Ay, Ay, A3 in Example 1.3 are the areas shaded in dark green in Figure 2. Note that
conv(Asy) is the line segment connecting (1,0) and (1,2).

For1<i<s,let A—a; ={a1—a;,...,a;1 —a;,a;41 — a;,...,as—a;} and let Z(A — a;)
be the lattice generated by these shifted exponent vectors, as in (3). You will prove in the
exercises that Z(A — a;) = Z(A — a;), for all 1 <4, j < s. The projective analog of (4) is:

Theorem 1.13. The dimension and degree of the projective toric variety X4 are given by
dim X4 = dimconv(A) = rank(A — ay), deg X4 = n!- Vol(conv(A)). (7)

Here the formula for deg X4 assumes that rank(A — ay) =n, and Z(A — ay) = Z".
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For a proof of this theorem, see for instance [14, Corollary 3.11 and Theorem 3.16]. To
obtain the defining equations of X 4, we must add a row of ones to the matrix A:

A_(l 1 .- 1)620”1)“. s)

a Qg --- Qg
This trick forces the binomial generators of /4 to be homogeneous |14, Proposition 3.7|.

Theorem 1.14. The toric ideal I ;, with A as in (8), is the prime homogeneous ideal I(X 4)
of the projective toric variety X 4.

A projective variety X C P! is covered by affine varieties Y; = X N U;, where U; =
{z; # 0} and z1, ...,z are homogeneous coordinates on P*~1. For the toric variety X4, the
vertices of conv(A) provide a more efficient affine covering |14, Proposition 3.33]:

Theorem 1.15. Suppose {ay,...,a,} C A are the vertices of conv(A) (m <s). We have
Xa=(XanU)U---U(XuNUy) = (XanUp)U---U(XaNUpy).

Moreover, the affine variety (Xa NU;) is the affine toric variety Ya_,, C C51,

2 Positive points and the algebraic moment map

We now switch from complex to real numbers. The real points of the affine (resp. projective)
toric variety Y, (resp. X4) are the points

Yi(R) = Y4NRY, X4(R) = X, NRPS

By Theorem 1.8, points in Y4 (R) are represented by real coordinate vectors (z1, ..., xs) € R®
satisfying 2 — 2% = 0, for all u — v € ker A. Similarly, Xa(R) = {(21 :---: 2,) € RP*! .
¥ —z¥ =0, for all u — v € ker A}. Among those are the nonnegative and positive points.

Definition 2.1. The positive affine toric variety (Ya)so C Ya(R) is given by ¢4(RZ), i.e.,
the image of the positive orthant R, under the monomial map ¢4 : (C*)" — C*. We
say that (Ya)so is the positive part of Y4. Similarly, the positive projective toric variety
(Xa)s0 C Xa(R), also called the positive part of X, is @ 4(RZ).

Example 2.2. By Example 1.1, the positive part of affine space C" is RY,. Similarly, we
have ((C*)")so = R”,. Example 1.10 constructs P"~! as the image of ®iq,, hence

P Yo = {(z1:---:a,) ERP" -2, >0,i=1,...,n}. o
Proposition 2.3. The following equalities hold:

(Ya)so = YaNRE,, (Xa)so = Xan (P ).



Proof. The inclusion (Y4)so C Y4 NR, is easy. To show the opposite inclusion, notice
that Y4y NRS, C Y4 N (C*)® = im¢y4. For this last equality, see for instance the proof of
Proposition 2.10 in [14]. Hence, a point z € Y4 NRR%; can be written

ro= (t", .. .,t%) = (t], ..., [t*]) = (J¢*,...,[t|*) for some t € (C*)".
Here | - | takes the absolute value, and [t| = (|t1],...,|ts]) € RZ,. This shows that z €
»a(RZ), and concludes the proof for Y4. The proof for X4 is analogous. m

Definition 2.4. The nonnegative affine toric variety (Ya)so C Ya(R) is the closure (Y4)~g of
(Ya)so in R®. Similarly, the nonnegative projective toric variety (Xa)so is (Xa)so C RP*™1.

Example 2.5. The nonnegative part of affine space C" is the nonnegative orthant (C")>o =
RZ,. The nonnegative part of (C*)" is the same as its positive part: ((C*)")>o = RZ,. The
nonnegative part of projective space is

(Pnil)zo = {(331 D Z$n> € R]Pm_l . 74 2 0, 1= 1,...,77,}. 3%
Proposition 2.6. The following equalities hold:

(Ya)so = YaNRY,, (Xa)so = Xan (P )so.

Proof. By Proposition 2.3, we have (Y4)so = Ya NR%, C Y4NRS, = Y4NRS,, which proves
one inclusion for (Y4)so. To show the other inclusion, let z € Y4 NR%,. Let supp(z) =
{a; € A : 2; # 0}. We write pos(A) C R” for the polyhedral cone generated by the integer
vectors in A: pos(A) = {ra; +---+1rsas : 7, € Ryp}. You will show in the exercises that

1. supp(z) = Q@ N A, for some face Q C pos(A),
2. there is t € (C*)" such that

t% a; € supp(x),
T; = . .
0  otherwise

Since x; > 0 for a; € supp(z), we may replace ¢ by |t|, and assume t € RZ,. Let w € (R")Y
be such that (w,a) =0 for all a € @, and (w,a) > 0 for all a € A\ Q. We have that

lim ¢a(u'ty,. .. u®t,) = lim (P ule) %y 0e)) = g,
u—0 u—0

Here u is a positive parameter. This shows that x € (Y4)s¢. The proof for the nonnegative
projective toric variety (X4)so is analogous, and left as an exercise. O

Example 2.7. Let Az be the 2 x 3 matrix from Example 1.3. The intersection of the toric
surface Yy, = {z* —yz = 0} C C? with R;O is its nonnegative part. This is the blue surface
in Figure 3, obtained by intersecting Yy, with RZ. o



Figure 3: The nonnegative part (Ya,)so of the toric surface Y4, = {2® — yz = 0}.

We now identify the nonnegative part (Y4)so of the affine toric variety Y, with the cone
pos(A). The map that realizes this identification is the algebraic moment map.

Definition 2.8. The affine algebraic moment map fia,, : Y4 — R™ with weights w € RZ is

S
paw(r) = sz‘ il - ai.
i=1

Note that restricted to the nonnegative part (Ya)>o, fta. is the linear map R® — R™ given
by the matrix A-diag(w). Here is the theorem that justifies our claim that (Y4)>o =~ pos(A).

Theorem 2.9. For any positive weights w, the restriction of the affine algebraic moment
map a. to the nonnegative affine toric variety (Ya)so is a homeomorphism onto pos(A).

Example 2.10. The image of the blue surface in the left part of Figure 3 under the linear
projection Az : R® — R? is the cone pos(Asz) shown in blue in Figure 4. o

To prove Theorem 2.9, we follow the approach in [6, Chapter 4]. It is a consequence of
Theorem 2.11 below. For each face @ C pos(A), let (Ya,ang)so = {z € (Ya)s0 : supp(z) =
ANQ}. By Proposition 4.1, we have (Ya)>o = UQCPOS(A)(YAAQQ)N. This is a disjoint union
over all faces of pos(A), including pos(A) itself, for which (Y4 .4)s0 = (Ya)o0-

Theorem 2.11. For each face Q of pos(A), the restriction of the affine algebraic moment
map fiaw to (Yaang)so is a real analytic isomorphism onto the relative interior of Q.

Proof. By Proposition 4.2, (Y4 ang)so is the positive part of the affine toric variety Yang C
ClA"Ql = Cr, parametrized by the monomial map ¢4ng. By Theorem 1.6, the dimension of
Yang is the rank of the submatrix ANQ = (a;, --- a;,), which is the dimension ¢ = dim )
of Q. We will show that, as a manifold, relint(Q) is isomorphic to R?, and this isomorphism
is realized by precomposing f14 with an isomorphism R? — (Y4nq)so-
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By Theorem 1.8, Ynq only depends on the row space of AN @), so that we may replace
the n x r matrix AN Q by a ¢ x r integer matrix Ag = (u; --- u,) whose row span over Q
equals that of AN Q. We have Ying = Ya, and (Yang)so = ¢a,(R%,). The restriction of
Gag to R? is a real analytic isomorphism onto (Y4ng)so. Consider the diagram

dA
R%, S (Yang)>o

T HAw
exp

R? —E int(pos(Ag)) —— relint(Q)

where exp(yi,...,y,) = (e¥,...,€e¥"), and the identification between pos(Ag) and @ is in-
duced by the identification of the column spans of AN @ and Ag. We define

F :R? — relint(pos(Ag)), y+— Zwij el
j=1

where u; is the j-th column of Ag. This map makes the diagram commute. The blue arrows
in the diagram are analytic isomorphisms. To prove the proposition, it suffices to show that
F' is a real analytic isomorphism as well. This is part of Theorem 2.13 below. O

Example 2.12. We consider again the matrix Az from Example 1.3. The cone C' = pos(A3)
is the image of (Ya,)>o under the moment map. The proof of Theorem 2.11 parametrizes
this cone in two more ways. First, the map R?; — int(C), using weights 1, is given by

(t1,ta) > (titg + tits + 2t3Lo, ity + 2115 + 1215).

This is obtained by composing ¢4, with the moment map. The meshed orange area in the
left part of Figure 4 is the image of (0,1)? under this map. In lighter shades of orange, the
images of (0,2)? and (0,3)? are shown. When a — oo, the image of (0, a)? fills the interior.
The other parametrization of int(C') precomposes this map with the exponential:

(th) , (€y1+y2 +€y1+2y2 4 262y1+y2’ eY1ty2 +2€y1+2y2 +62y1+y2)'

This is the map R? — int(C) from the proof of Theorem 2.11. The images of (—a, «)? for

a = 1,2,3 are shown in the right part of Figure 4. o
Theorem 2.13. Let ' : R? — R? be a map of the form F(y) = Y '_, w; - eWui) ., where
U, ..., u. € R span R? and w;, > 0. We have

(A,) F is a real analytic isomorphism onto C' = int(pos(uy, ..., u,)),

B,m) For any linear surjection w : R? — R™, wo F is onto int(w(C')), and the fibre of
q?
mo F over any point of int(w(C)) is a connected manifold isomorphic to RI~™.

Proof. First, we show (A;). The derivative of F(y) = >7"_ wje¥™u; is 37 wjuie’™ > 0.
This shows that F' is injective. To show surjectivity onto int(C'), we distinguish three cases:
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Figure 4: The cone pos(Aj3) is parametrized by R? ; and by R?.

1. all u; are negative, C' = R, lim,,_, F(y) = —oo0, lim,_,o F(y) =0,

2. all u; are positive, C' = Ry, lim,,_, F(y) =0, lim,_,, F(y) = o0,

3. some u; are negative, some positive, C' = R, lim,,_, F(y) = —oo, lim,_,» F(y) = oo.
This proves (A;). Next, we prove the following two helpful claims:

(i) F' is one-to-one and

(ii) the Jacobian matrix (8F - is positive definite for all y € R%.

Ay, ) 1<ik<n
For (i), it suffices to show that the restriction of F' to any line is one-to-one. This is clearly
necessary, and it is sufficient because if F'(y) = F(y'), then F' is not injective on the line
connecting y and y'. Fix any line L C R%. After a change of coordinates, we may assume
that L is given by fixing the last ¢ — 1 coordinates: L = {y» = v5,...,y, = ¥, Let
W; = wje¥22 T akia where ujy is the k-th coordinate of u;. The restriction of F to L is

T
Yy — E w; - eV -y
=1

The first coordinate of this function is one-to-one by (A;), so Fj;, is one-to-one.
To show (ii), we compute % = Do Wy U ey ;. Note that this matrix is
symmetric. It represents a positive definite quadratic form given by

OF; ,
v=(v1,... v — vt < > Sy o= ij.e(y,ug><v7uj>2.
Y 1<i,k<n ;

The next step is to show (A,,) = (B,m) for all m < ¢. After changing coordinates 7 : R? —
R™ is the projection (y1,...,y,) — (y1,...,Yym) onto the first m coordinates. We write
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7T (Y1, Yg) = (Ymt1, - - -, Yq) for the complementary projection. To simplify notation, let
us write y = 7(y) € R™, and y = 7(y) € R¥™™. Notice that

Fly) = Zw elw) - W)y,

When we fix the last ¢ — m coordinates of y, that is, we fix y = 7(y), we see that the map
Fy:y— m(F(y,y)) is a real analytic isomorphism R™ — int(7(C)) by (A;,). The positive
weights are w; = w; - %%’ This proves, in particular, that 7 o F is onto int(7(C)). To
show that fibres are isomorphic to R?~™, for each p € int(7(C)), consider the map

Gy :RT™ — (o F)"H(p), 5 — (F;'(p).9).

Y

By the above discussion, this is one-to-one and onto. To show that it is an isomorphism of
manifolds, we use the implicit function theorem. Using coordinates (z, Z) on the image, we
see that the graph of our map is given by G(7, z, 2) = 0, where G : R~ _ R4 is

G(9,2,2) = ((mo F)(z,2) —p, 2 —9).

Indeed, we have G(y, G,(y)) = 0. The derivatives with respect to the variables z, z give a
q X q Jacobian matrix of G, whose first m rows are the first m rows of the Jacobian matrix
from (ii). The last ¢ —m rows consist of a (g —m) x m block of zeros, and a (¢—m) x (g —m)
identity matrix. By our computations in the proof of (ii), the Jacobian is invertible for all
values of (¥, z,z). Hence G, is analytic, and establishes R9™™ =~ (7 o F))~!(p) as manifolds.
The last step is to show (B,,-1) = (A,). By (i)-(ii), F' is one-to-one, and it is a local
isomorphism. We need to show that (B, ,—1) implies that F is onto. We first prove that

im F' contains a point arbitrarily close to any point on each ray of (C). (9)

Suppose that u; spans ray. Let J C [r] = {1,...,r} be defined as J = {j € [r] : u; =
s;up for some s; € R}. e, J indexes the vectors u; which lie on the same line through 0 as
uy. There is v € R? such that (v,u;) =0 for j € J and (v,u;) <0 for j ¢ J. We have

. / .
lim F(Av+v') = lim E wj - AT Ly = E w;el %s s | .
A—00 A—00

jedJ

Here the s; are the scaling factors appearing in the definition of J, and " € R? is arbitrary.
We now apply (A;) to the expression between parentheses on the right hand side. If all s;
are positive, we can choose v’ to approach any point on the ray Ryq - u;. If at least one of
the s; is negative, than R - u; belongs to the lineality space of C, and v’ can be chosen to
approach any point on this line. This establishes the claim (9).

Knowing (9), to show that F' is onto, it suffices to show that im /' C RY is convex.
Equivalently, the intersection of im F' with any line L. C RY is either connected or empty.
Any such line L is the fibre 77*(p) of a linear projection 7 : R? — R?"!. We have

FRY) N7~ (p) = F((mo F)"(p)).
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Figure 5: The nonnegative toric variety (Xa)so from Example 2.16 is a triangle.

By (Byq-1), (mo F)7'(p) is connected or empty. Since F is continuous, so is F/((mo F)~!(p)).
We have shown (A1), (A,) = (Bym) and (By4-1) = (Ay). The theorem now follows by
induction: (Al) = (B271) = (AQ) = (B372) = (Ag) = ... ]

We now turn to projective toric varieties. We start with a projective moment map.

Definition 2.14. The algebraic moment map fia,, : X4 — R™ with weights w € R is

i 1 -
fiaw(T) = Zwi il - ai.
1

I e o (A N e

Notice that fi4 , is well defined on P¥~1. Ignoring absolute values, the map fi4 ,, is given by
the matrix A-diag(w), viewed as a map between projective spaces: A-diag(w) : P*~1 --» P,
followed by the dehomogenization P --+ R™ which divides by the first coordinate.

Theorem 2.15. For any positive weights w, the restriction of the algebraic moment map
fiaw to the nonnegative projective toric variety (Xa)so is a homeomorphism onto conv(A).

Example 2.16. The surface Yy, = {z* — yz = 0} is an affine open subset of X, = {z* —
yzw = 0} C P3. The matrix A is given by

0112
A‘<0121)'

The corresponding polygon conv(Ajz) is the triangle in the right part of Figure 2. The
surface X4 (orange) and its nonnegative part (X4)so (blue) are plotted in Figure 5, using
x4y + 2+ w = 1. The surface has three singular points, one for each vertex of the triangle.
The nonnegative part is homeomorphic to our triangle, as predicted by Theorem 2.13. ¢

Like in the affine case, Theorem 2.15 follows from the following statement:
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Theorem 2.17. For each face Q@ of conv(A), the restriction of the algebraic moment map
faw to (Xaang)so @5 a real analytic isomorphism onto the relative interior of Q.

Here X4 ang = {x € X4 : supp(z) C Q}. After suitable coordinate changes, we are left
with the following analog of Theorem 2.13:

Theorem 2.18. For positive weights w; and u; € R?, let F :R? — R? be a map of the form

Fly) = > e (vsu) ij )

j=1Wj
If P = conv(uy,...,u,) has dimension q, then F is a real analytic isomorphism onto int(P).

Example 2.19. In Example 2.16, the two-dimensional face () = conv(A) leads to the fol-
lowing map R? — R? (we take all weights w; to be 1):

( ) eYItyz 1 e¥1+2y2 | 9o2u1ty2 eY1ty2 1 Qeyit2y2 | o2y1+y2
Y1, Y2 ?

14+ evrtv2 4 evit2y2 4 2u1+y2’ | 4 evity2 + e¥1+2y2 4 e2v1+y2

Theorem 2.18 claims this is a real analytic isomorphism of the plane onto the interior of the
triangle conv(A). The image of [—«, a]? for « = 1,2,3 is shown in the right part of Figure
5 in different shades of orange. When o — oo, the image fills the blue triangle. o

Proof of Theorem 2.15. Let U = (uy --- u,) € Z9" be the matrix whose columns are u,;.

The assumption dim P = ¢ implies rank(U ) = ¢+ 1. Theorem 2.13 says that ' : R¥™t —

int(pos(0)), with
yOv Zw (y ) el ”LAL],

is a real analytic isomorphism. Here (yo,y) (Yo, Y, - - ,Yq) are coordinates on R?™ and
t; = (1,u;) € R We identify int(P) ~ int(pos(U)) N {first coordinate equal to 1}. Its
preimage under /' is yo = —log(>_7_, w; - eui)). The restriction of F to this preimage is

precisely F'. More precisely, we have F/(— log (D7, wj - eWuil) o) = (1, F(y)). O

3 Selected applications

This section presents some applications of nonnegative toric varieties. We start with an
interior point method for linear programming [12]. Next, we switch to statistics [1]. Finally,
we discuss toric patches in geometric modelling [9].

3.1 Entropic regularization for linear programming

A linear program seeks to minimize a linear function on a polyhedron. It is given by

minimize ¢’ - x,  such that Az =band z > 0. (10)
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Here ¢ = (¢1,...,¢,)" € R® is a real vector of length z, A € N™ 5 is an n X s matrix with
nonnegative integer entries and b € R". The requirement that A has nonnegative entries
ensures that the feasible region Payp = {x € R® : Ax = b, x > 0} is compact. That is, Py is
a convex polytope. The restriction that A has integer entries is required for the connection
with toric varieties. The problem is feasible, i.e., P4 is nonempty, if and only if b € pos(A).
We assume that b € relint(pos(A)), so that P4y is full-dimensional in {Az = b}. Otherwise,
the problem can be reformulated for smaller s. We also assume that the minimizer is unique.
This happens for most vectors ¢, and the minimizer is a vertex of Pay.

Interior point methods solve (10) by first replacing the objective function ¢’-z by a strictly
convex function on P,p. For instance, one adds a strictly convex function h : RS, — R to
c' - x. This is called regularization. Our choice of h corresponds to entropic reqularization:

S
minimize ¢ - x + ¢ - Z(% logz; —x;), such that Ax =0band z > 0. (11)
i=1
Here ¢ is a positive parameter. One checks that tlogt — t is strictly convex on R, and its
derivative diverges for ¢t — 0T. This ensures that for each ¢, there is a unique minimizer
x*(e) € int(Payp). When ¢ — 07, the point 2*(¢) approaches a minimizer of (10).
Since 2*(¢) € int(Pyay), it has to satisfy first order optimality conditions. The Lagrangian

L= ct-x—l—E-Z(xilogxi—xi) — ' (Ax —b)
i=1
has partial derivatives VoL = Az —b, VL = c—elog(z) — A\'- A. Here V, takes derivatives
with respect to the n Lagrange multipliers \q,..., \,, V. takes derivatives with respect
to x1,...,xs, and log(x) = (log(xy),...,log(xs)). From this, we see that the first order
optimality conditions VL = VL = 0 are equivalent to

Cs

Ar=0b and =z = <e%e</\’a1>, . ,e?e<’\’“5>> for some A € R%,.

A

Here a; € N” are the columns of A. Changing coordinates t; = e, we obtain

Ar=b and z= (e%t‘”, . ,e%tas) for some ¢t € RY,,. (12)

1
e

We let w = w(e) = (e=,...,e<) € RS, and define the scaled affine toric variety
wx Yy = {(wzy,...,wszs) € C° 1 x € Ya}.
Its positive part is (w* Yy4)so = (w* Y4) DR,

Theorem 3.1. The minimizer *(¢) of (11) is the unique intersection point of the positive
scaled toric variety (w(e) * Ya)so with the feasible polytope Pyy.

Proof. By (12), we have that x*(¢) = w(e) * u;}w(a)(b), where x multiplies vectors entry-
wise. Here we use that the moment map ji4,, is a homeomorphism (Theorem 2.9). By the
assumption that b € relint(pos(A)), Theorem 2.11 ensures that u;}w(s)(b) € (Ya)so. Clearly,
this implies 2*(e) € (w(e) *Ya)s0 N Payp, and this intersection consists of only one point. [
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In the limit € — oo, the optimizer z*(e) converges to the Birch point (Ya)soN Pap of Ya
associated to b. We will motivate this name in the next section.

Example 3.2 (Optimal transport). We describe a transportation problem that leads to
a linear program which is often solved via entropic regularization. Suppose p; units of a
product are stored at stations i € {1,2}, and v; units are desired at stations j € {1,2,3}.
The cost of transporting one unit from station ¢ to station j is ¢;;. Let x;; be the 2 x 3
matrix representing the number of units transported from unit ¢ to unit j. This is called the
transportation plan. Optimal transport asks for the transportation plan that minimizes the
total cost. This is formulated as a linear program (10) with parameters

111000 "
000111 12
c = (c11,¢19,C13,C01,Co0,023)", A =110 010 0|, b=1|wn
0100120 Vs
001 001 Vs

We have seen this matrix in (2). This formulation assumes that all units at stations i are
transported to stations j, and precisely v; units arrive at each station j. Clearly, this requires
W1+ e = v + 5+ v, If this is not satisfied, the problem is infeasible. The feasible polytope
P, 4, for optimal transport problems is called the transportation polytope. By Theorem 3.1, the
Birch point is the unique positive rank-1 2 x 3 matrix inside the transportation polytope. <

3.2 Toric models in algebraic statistics

A probability distribution for a discrete random variable with s states is a point in the
(s — 1)-dimensional probability simplex

Agr = {(z1,...,25) €ERYy - oy + - 2 = 1},

Maximum likelihood estimation means estimating a distribution p € A,_; from empirical
observations, using the ansatz that p belongs to a model. More precisely, suppose that the
state i is observed u; € N times in an experiment, for i = 1, ..., s. The likelthood of observing
the data (uq,...,us), assuming the probability distribution (p1,...,ps) € Ag_1, is py* - - - ple.
Using a priori knowledge on the random variable, we expect that the true distribution p
belongs to a statistical model X C A,_y. The mazimum likelihood estimate (MLE) is the
distribution p* € X that maximizes the likelihood pj* - - - p¥. Equivalently, and often more
practically, we maximize the log-likelihood u,logpy + - -+ 4+ uslog ps on X.

In algebraic statistics [5, 13|, the model X is an semialgebraic set, obtained by intersecting
an algebraic variety with the probability simplex. In our setting, we will identify A, ; ~
(Ps~1)5( with the nonnegative part of projective space, and our models are called log-linear
models, exponential families or toric models, see for instance |5, §1.1 and §1.2] or [1].

Definition 3.3. The toric model associated to an integer matrix A € Z™*® is the nonnegative
projective toric variety (X4)so C (P*71)so.
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In the exercises, you will check that the positive part (X 4)-¢ of the toric model consists
of all probability distributions (z1,...,zs) € relint(As_;) whose coordinate-wise logarithm
(log xq,...,logxs) belongs to the row span of A. Since the matrices A and A define the same
projective toric variety X4, we will assume from now on that the vector of all ones (1,...,1)
is in the row span of A. The following theorem describes the MLE for toric models.

Theorem 3.4 (Birch’s theorem). The MLE for the toric model (Xa)so C (P57 1)5o = Ay
for a vector u = (uy,...,us) € (N\ {0})® is the unique point p* € (Xa)so satisfying

Ap" = Au, where u= L,"'7L )
Up + -+ Us Up 4 - Us

Proof. The MLE is obtained from the following optimization problem:

minimize — Zuz logz; such that logxz € Row(A), Zmz =1and z € RY,.

i=1 i=1
Let B € Q*** be a kernel matrix for A: A-B = 0, rank(A) = s —¢, rank(B) = (. We express
the condition logz € Row(A) as B' -logx = 0. The Lagrangian is

L = —u"-logz—\-(B" logx) —M'(Z%’ - 1),

where A € R® and p € R are Lagrange multipliers. Partial derivation with respect to x gives

—A
—u—B-A=p-x, and hence Ax = g
1

Here we just multiplied from the left with A. Now, by the assumption that (1,...,1) €
Row(A) there is ¢ € R™ so that ¢+ A = (1,...,1). Applying ¢’ from the left to our equation,
we see that >, z; = —u~ (3, u;). Together with the condition Y, z; = 1, this gives u =
— >, u;. Hence Az = Au as desired, and there is only one such point = p* € (Xa)so by
Theorem 2.17. For this we use Au € int(conv(A)). O

Example 3.5 (Independence models). Suppose we ask a population of 100 people whether
they are vegetarian (Y = yes, N = no), and which of the three subjects algebra, geography
and history they find most interesting (A = algebra, G = geography, H = history). A purely
fictional outcome of the experiment is the following table:

A G H
Y15 7 16
N|24 14 24

We consider the random variable with six outcomes YA, YG, YH, NA, NG, NH. For instance
YH is the state in which a person is vegetarian and likes history the most. The probabilities
of being vegetarian or not are denoted by py and py, and the probabilities of being most
interested in algebra, geography or history are pa, pq, pu. Assuming that being vegetarian
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or not is independent from someone’s subject preference, the probability of liking algebra
and being vegetarian is simply the product zya = pypa. This parametrizes a model

(py, PN, DA, Pas pr) — (DYDPA  PYDG : DYPH : PNPA © DNDG : papa) € PP~ As.

We recognize the toric model given by the matrix A seen in (2) and Example 3.2. The MLE
is the unique positive solution to the system of polynomial equations

Ty Ts Ts

rank <”31 2 5”3) <2 and Az =(0.15,0.07, 0.16, 0.24, 0.14, 0.24)". o

3.3 Toric patches in geometric modelling

A matrix P = (p; --- p,) € CHEDXS represents a rational map 75 : P! -—» P*. This
map is called the central projection from P(ker ]5), where ker P C C¢ is the kernel of ]5,
viewed as a linear map C* — C**!. The image of the projective toric variety X, C P*~! is
parametrized by polynomials whose monomial support is contained in A:

(mp 0 ®A)() = pr £+ -+ o1 € P (13)

It is clear that any unirational variety arises as the closure of 75(X 4) for some P e Ccltl)xs,

and some A € Z"*5. Here, we consider only real matrices Pe RE+DXs “and we are interested
in the image 75((X4)>0) C RP” of the nonnegative projective toric variety associated to A.
From (13), we see that this image consists of nonnegative combinations of the columns of P,
viewed as points in P*. After a coordinate transformation, we may assume that their first
coordinates are nonzero. Furthermore, below we will introduce positive weights for each of
the columns of 15, so that we may scale the first row of the matrix to be the all-ones vector
(1 --- 1). In analogy with our notation above, to denote the matrix consisting of all but

this first row, we drop the hat and use P = (p; --- ps) € R¥*S.

Definition 3.6. The toric patch associated to the matrices P € R¥**, A € Z"** and the
vector of weights w € R, is the image of (X 4)>o under the algebraic moment map

_ 1 -
firu(T) = lwy - x| + -+ |w, - x4 ;wi il i

Up to taking absolute values, the map jip,, is constructed by composing 7 with scaling
and dehomogenization, like in the discussion following Definition 2.14. In particular, by
Definition 2.14 and Theorem 2.15, the toric patch for A = P (in particular, n = k) equals
the polytope conv(A). This is called the tautological patch in |2, Example 3.8].

In geometric modelling, the columns of P are called the control points, and the coefficients
of p; in the formula for fip,,, restricted to X4, are the blending functions. Toric patches with
k = 2 and n = 1 are Bézier curves. They are linear projections of nonnegative rational
normal curves, the homogeneous version of the moment curves in Example 1.2. These are
used, for instance, in font design |2, Example 3.2|. Toric patches with k = 3 and n = 2 are
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Figure 6: Two toric patches from Example 3.7 with weights w; (left) and wsy (right).

projections of nonnegative toric surfaces which are used to create and approximate all kinds
of shapes. For instance, |2, p. 94] mentions the Guggenheim museum in Bilbao. The most
commonly used surface patches are the tensor product surface of degree (dy,ds), which uses
A={(a,b) €Z* : 0<a<d,0<b<dy}, and the triangular Bézier patch of degree d,
which uses A = {(a,b) € Z* : a > 0,b > 0,a+ b < d}. Via the inverse of the moment map,
such patches are parametrized by rectangles and triangles respectively. The more general
patches from Definition 3.6 were introduced by Krasauskas in [8]. We give one example.

Example 3.7. We draw toric patches corresponding to the following matrices:

4_(0123012301230123
~\0000111122223333)’
012301 2 301 230123
p=({000011 1 12 2 223333
032003 -1200-2110003S3

The parameters are n = 2,s = 16, k = 3. The projective toric surface X 4 corresponds to the
polygon conv(A) = [0, 3]2. Tt is the Segre-Veronese embedding P! x P! — P15 of degree (3, 3).
To illustrate the influence of the weights w, we plotted the toric patch fip.,((Xa)so) C R?
for two different sets of weights in Figure 6. The weights are

wy = (1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, 1),

7YY Y ) ) ) ) Ty ) Y ) ) ) )

wy = (1,1,1,1,5,100,5,5,5,100,5,5,1,1,1,1).

The figure demonstrates the convexr hull property: a toric patch is always contained in

conv(P), the convex hull of the control points. o

Acknowledgements. Thanks to Saiei-Jaeyeong Matsubara-Heo and Nobuki Takayama
for organizing the summer school in Kobe. Thanks to Leonie Kayser for useful discussions.
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4 Exercises

1. Toric ideals. Prove the inclusion Iy C I(Yy).
2. Affine lattices. Prove that Z(A —a;) =Z(A —a;) forall 1 <i,j <s.

3. Dimension, degree and smoothness. Verify Theorems 1.6, 1.9 and 1.13 for the
matrices A, Ay and Az in Example 1.3.

0 0 1 -1 0

1. Determine the vertices of Conv(A). For one of these vertices v, write down a monomial
parametrization of the affine toric surface Y,_,, and compute its toric ideal. Is this a
smooth surface?

4. Double pillow [9, Section 7]. Consider the integer matrix A = (1 L0 O).

2. Compute the toric ideal of the projective toric surface X, C P*.

3. Compute the defining equation of the projection of X4 under

1 1 1 1 0
1 0 0 O
0 0 1 -1 0
0 0 0 0 1

Pt o PR,

4. Plot the surface 7(X,) in the affine chart of RP* with nonzero first coordinate. Do
you recognize the real part of m(Y4_,) from part (a) in the picture?

5. Identify m((X4)s0) in the plot. Verify that (X 4)>¢ is homeomorphic to Conv(A).

5. Real toric varieties. Show that ¢4((R*)") C Y4(R), where - is the Euclidean closure,
might be a strict inclusion.

6. The boundary of an affine toric variety.

Proposition 4.1. Let © € Y4 C C° and let supp(z) = {a;, € A : x; # 0}. We have
supp(x) = Q N A for some face Q of the cone pos(A) = {riay +--- +rsas : 7, € Ryo}.

7. Stratification of affine toric varieties.

Proposition 4.2. For a face Q C pos(A), let ANQ = {a;,,-..,a; } and define the projection
7Q:C°* = C", v (xy,...,x:). Let Yaang = {x € Ya, supp(z) C ANQ}. We have

mQ(Ya) = mq(Ya,anq) = Yane-
In particular, if supp(z) = ANQ, then there is t € (C*)" such that

{w a; € ANQ,
xT; = .

0 otherwise
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8. Nonnegative projective toric varieties. Prove the second part of Proposition 2.6.

9. Positive toric models. Show that the positive part (X4)so of a toric model consists
of all probability distributions (z1,...,z,) € relint(A,_;) whose coordinate-wise logarithm
(logx1,...,logxs) belongs to the row span of A.

10. Maximum likelihood estimation. Compute the MLE for Example 3.5. Based on
these fictional data, does your result confirm the ansatz that being vegetarian or not is
independent of someone’s subject preference? Can you estimate py, pn, pa, PG, Pu?

11. Toric patches. Plot the Bézier plane curve of degree 6,i.e., A= (01 --- 6), for any
matrix of control points P € R**% and weights w € R%,. Investigate the influence of the
control points and the weights by experimenting. Same exercise for k = 3 and

0 1 2 1
A:(oo 11)'
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